Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages
نویسندگان
چکیده
Many clinical trials and other medical and reliability studies generate both longitudinal (repeated measurement) and survival (time to event) data. Many well-established methods exist for analyzing such data separately, but these may be inappropriate when the longitudinal variable is correlated with patient health status, hence the survival endpoint (as well as the possibility of study dropout). To remedy this, an earlier article proposed a joint model for longitudinal and survival data, obtaining maximum likelihood estimates via the EM algorithm. The longitudinal and survival responses are assumed independent given a linking latent bivariate Gaussian process and available covariates. We develop a fully Bayesian version of this approach, implemented via Markov chain Monte Carlo (MCMC) methods. We use the approach to jointly model the longitudinal and survival data from an AIDS clinical trial comparing two treatments, didanosine (ddI) and zalcitabine (ddC). Despite the complexity of the model, we find it to be relatively straightforward to implement and understand using the WinBUGS software. We compare our results to those obtained from readily available alternatives in SAS Procs MIXED, NLMIXED, PHREG, and LIFEREG, as well as Bayesian analogues of these traditional separate likelihood methods. The joint Bayesian approach appears to offer significantly improved and enhanced estimation of median survival times and other parameters of interest, as well as simpler coding and comparable runtimes.
منابع مشابه
Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملمدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کاملکاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی
Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...
متن کاملMultivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملJoint modeling of longitudinal and event time data: application to HIV study
Many clinical studies generate a dataset having longitudinal repeated biomarker measurement data and time to an event data, which often depend on each other. In such studies, characteristics of the pattern of a biomarker change, and the association between the primary survival endpoint and features of the longitudinal profiles are commonly of interest. Often separate analyses using a mixed effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004